

My First Jasmine Project 1

My First Jasmine Project
By Bill Cross

CA-World 2000
eBusiness Solutions in Internet Time

JG065SN

Introduction

This paper presents an honest look at the successes and lessons learned resulting from the development process
of our first Jasmine application. This paper will review issues and decisions regarding scheduling, cost
estimation, User Interface (UI) language choices, development tools, data model development, ODQL issues and
other relevant topics. The intent is to provide an opportunity for developers and managers to learn from our
experience. Any comments or questions are welcome and may be addressed to the author at
BillCross@vwi.com.

Project Overview

The subject project was to develop a prototype supporting the management of information gathered during the
Army medical master planning process. This process involves the complete review of a regionalized health care
system supporting United States Military members, retirees, their collective dependents, and other authorized
beneficiaries. This review focuses on all information that is deemed pertinent to real estate capital improvement
and repair decisions.

The basic problem being defined and resolved is whether a particular medical facility and its network of clinics
are the best candidate for limited facility repair, renewal or replacement funds. In order to answer this question,
each facility is analyzed from multiple perspectives: the building and its physical condition; how well it supports
the current and proposed future operations; the efficiency of the current operations (correct staffing numbers);
projected changes to the future beneficiary (customer) populations and the medical services they demand; and
finally the integration of any decisions into a fiscal budget spanning one to five years.

Types of information being gathered included:

• Architectural drawings representing the buildings’ current layouts and also proposed alternatives for future
“optimized” layouts.

• Condition assessment documents and reports assessing each of the buildings’ engineering systems, e.g.
electrical, heating, ventilation and air conditioning (HVAC), medical gases or transportation. These
assessments would often include substantial narratives, exemplary photographs and subjective (but scaled)
ratings as to the conditions.

mailto:BillCross@vwi.com

2 JG065SN

• Tabulations of each space within the building as it is currently being used and also of the rooms that are
proposed for the future.

• CAD templates used as typical room layouts and representative of the desired “Criteria” standard to be
attained.

• Detailed records of historical patient visits providing details of patient demographics in correlation with
medical services being requested

• Records of cost accounting attributed to the various medical services.

• Population projections for the local region around each medical facility.

The initial goal of this project was to create a database application that would support the basic storage of all the
above output from the master planning process. The ultimate goal was for the application to be capable of
evolving to become part of the master planning process. It would ultimately enable the analysis of the above
disparate sets of information across regions, medical services, and medical networks. And, to do all of this on a
shoestring budget.

Beginning

The project began following a discussion between the client and our senior management. As a result of this
meeting a funding scope was discussed. The initial desired estimate was $125,000, based primarily upon the
availability of funding and not the result of analyzing the requirements. The latter would have been difficult in
any case, since the requirements were very loosely phrased. The stated intention was for the project to allow
electronically storing the results of the master planning process. The client requested to have the product within
a year. Fortunately for me, I was requested to personally lead this effort since I had recently left the client’s
organization. It was felt that I understood the client’s needs better than they did. I made the mistake of believing
this too.

After discussions with the user and my boss, I attempted to write a statement of scope that would match what I
understood to be the user’s desired result. I had developed applications previously, but always functioning as
both user and developer. This was to be my first Jasmine application, and due to the request for completion
within a year, I would also need to partner with other developers to accomplish the project. My company had
the added requirement to structure this contract as a fixed price type of proposal. This might work reasonably
well where the requirements and functionality had been clearly defined; however, those were part of the initial
deliverables for this scope.

Project success normally stands upon a three-legged stool of quality, cost and time. As the result of the initial
discussions with the client, two of the legs had already been established. I adjusted the scope statement to
stipulate that this effort would result in a “prototypical” product. I also continued to define the scope to present a
product that would meet what I believed were their realistic needs. They needed a database product that would
support the various interrelated items of information necessary to properly determine and allocate funding for
real estate development. This database needed to be capable of storing various types of data, and be scalable to
meet the database's future growth.

My First Jasmine Project 3

The ability to adapt to not only the changing real estate solutions, but also to changing solution processes was an
essential requirement to long term viability of the project solution. Jasmine through its object orientation met
these needs handily, since it supported all types of media, was scalable, relatively inexpensive (when compared
against and Informix or comparable installation), and through its pure-object implementation provided an
“…enabling technology for adaptive business systems.”1

Lessons Learned

Following are some of the main lessons learned from this, my first Jasmine project.

Development

Team

Immediately upon receipt of the contract, we established a team consisting of myself as project manager,
functional analyst, object modeler, and technical writer. Another object modeler was added as part of the team,
and coding was performed through use of a subcontractor. Their staffing grew from one programmer in the
initial months to six programmers toward the end of the effort. This type of staff growth is to be expected, since
the construction phase is expected to entail 65% of the effort2. Having two data modelers was the right number,
however, I definitely played too many roles in the project.

Design and Approach

The decision regarding the back-end data server was made at the project's very beginning to be Jasmine.
However, the decision as to the best GUI language was still to be determined when the project got under way.
We considered four development platforms:

1. Jasmine Studio v1.2

2. C++

3. CA-Visual Objects (v2.0)

4. Java with Java Proxies (on the Jasmine installation CD)

We had three main considerations for each platform. The ability of the language to work with Jasmine, the
language's internet support capability, and the availability of programmers knowledgeable in the selected
language. We felt that while the Jasmine Studio v1.2 software worked very well with Jasmine and did support
the Internet well, it had two serious limitations. First, the availability of knowledgeable programmers was
extremely limited at the time we were considering it (mid 1998). Second, the design interface did not allow the
programmer to work with script. Instead the programmer was forced to work solely through the design interface.
We felt that this would limit the speed at which the programmer could develop, since all actions had to be
accomplished through the development GUI. Cut and paste operations while working in code were not an
option. We also did not have a budget that would allow learning a new tool.

C++ was considered but was felt to be too difficult to work with for a prototype. The Jasmine C-API provided
complete access to Jasmine's functionality, but C++ as a tool did not come with a framework for the application.

1 Taylor, David A., 1998. Object Technology A Manager’s Guide, 2nd Edition, p1
2 Kruchten, Philippe, 1998. The Rational Unified Process, An Introduction. p118.

4 JG065SN

CA-Visual Objects version 2.0 was also considered. The other modeler and myself were both VO programmers
and would have liked very much to develop the GUI in this our favorite language. However, while v2.5
promised to provide strong Jasmine functionality (and in truth v2.5 does indeed make working with Jasmine
relatively straightforward), at the time when we had to decide, v2.5 was still a future product with an uncertain
release date.

In consideration of the above, JAVA was chosen as the GUI development language. It provided a reasonably
strong interface with Jasmine. It was also a language with a large and growing number of programmers.
However, I found that Java like C++ did not come with a ready-made database framework. The basic
requirement to rapidly build menus, create data access windows with database navigational abilities all had to be
manually developed.

If the decision had to be made again today, I would definitely select CA-Visual Objects v2.5 as the development
language. With its strong interface to Jasmine through its own proxy objects, plus its ability to call Jasmine
commands directly it has all the capability of Java with Java proxies. However, it also has a ready-made
framework for database application development, with the ability to rapidly create a basic application with
menus and navigational data entry screens immediately available out of the box, while also allowing complete
program control through compiled script and a C API. It also has a strong speed advantage when running in a
Windows environment, which was the client’s principal operating system.

The design approach was to maximize the use of Jasmine to store all aspects of the basic business of master
planning. We wanted to fully implement the object concept through Jasmine. Our business objects would
contain the business data in the form of attributes and also the business logic in the form of methods. A typical
application has most of the business logic written into the source code of the GUI application itself, with only the
data being stored in the database. We wanted the Graphical User Interface (GUI) to server purely as the user
interface with minimal business logic.

This separation of GUI and server came about from a few reasons. Although the initial project prototype was for
a network-based application, it was believed that the production application would demand an Intranet solution.
Again Jasmine as a backend supported both readily, the issue was making the GUI a powerful interface in both
environments. The Java (or C++ or VO) decision was supportable since all users of the future application would
be part of the company and would be able to download the necessary software. The delivery model was closer to
that of AOL or CompuServe, where the interface application must be mailed to the customer on a CD, as
opposed to a pure web HTML interface and delivery scheme.

Our intent created interesting challenges in trying to keep the GUI dumb. Even things like the construction of
tree views for exploring through data was determined to be something that should be provided by the Jasmine
database. It was decided that each class should be able to tell the GUI how the hierarchy of its attributes should
be grouped together to create an explorer tree view. To require the interface to sort through various attributes
and layers of contained objects would mean that the GUI was aware of the basic business rules of ownership and
relationships among the various objects. A modeling approach to solving this resulted in the design of
intermediate classes. The GUI would make a request to an intermediate object for specific information such as a
chart. Information requests would be determined by the methods available on the chart intermediate object. The
chart intermediate object would then be responsible for calling to the respective business object asking it to
populate the chart object with data. When the object was populated it was then passed back to the GUI which
would be responsible for format and presentation. The creation of such intermediate classes was readily
supported through Jasmine and the Java proxy methodology.

My First Jasmine Project 5

User Interface - Java

Jasmine Object Database

App Shell

Printing

Charting

Data Storage

Client File
Access

Object Creation
Wizards

Java Proxy
Objects

Business Logic

Explorer
Navigation Data Entry / Edit

Whip Drawings

Red arrows indicate write only,
yellow indicates read & write, and
thick black arrows indicate read
only. Thin black lines indicate
ability to call a sub-system with
point indicating who was called.

Red shapes indicate
data creation capability.
Others are read access.
Blue shapes indicate
accessing local (client)
systems.

Figure 1: Diagram of resultant split between GUI and Server

Modeling

A large amount of the effort both in terms of schedule and man-hours was devoted to modeling the problem and
its solution. Performing this modeling required a tool that would allow me to share the results with the rest of
the team. Ideally, each member of the team would have a copy of the tool, but at the very least I needed to be
able to print a copy for all team members (and the client). This meant that I would be able to produce both a
hard copy or an electronic copy, e.g., an Acrobat .pdf file.

With cost being a major consideration, I originally began using a free tool called "Playground" from Object
International (www.OI.com) to perform the object analysis and design. This worked well as the learning tool it
was intended to be. By remaining relatively simple, it allowed me to focus on designing the objects and not on
using a new software product. However, I rapidly encountered its limitations both in its ability to handle large
models and its ability to support the necessary documentation requirements. This tool did allow copying the
model to the clipboard and pasting the diagram into MS Word. It did not support exporting to another file
format nor did it allow documentation of any kind other than as graphic blocks.

6 JG065SN

After approximately three months of use with Playground, I was forced to buy two copies of Rational Rose. The
original Playground model had to be manually entered into Rational Rose. Rose was selected primarily because
the other object modeler had a script that would run within Rose and generate ODQL from a Rational Rose data
model. I found Rose's price to be comparable to most other modelers such as TogetherJ, about $2,000 for a
single user version.

Coordinating development of the object model between two remote modelers posed some problems.
Reconciling versions of the data model became time consuming. Rational Rose provides a visual-differencing
tool; however, we still had to manually run through the entire model checking each component identified as
being changed. We subsequently learned to constrain each of our development efforts to separate sections
(packages) of the model. A versioning system for Rose would have been appreciated, especially one that worked
over the Internet.

Our final model resulted in over 195 classes. Rose readily handled this size producing a model file of about 3
MB, including all documentation and also the use case models.

Coordination and Documentation

Coordinating the model development among the modelers and the programmers relied principally on generating
hardcopy (or Acrobat pdf) output for use and reference by the programmers. They did not have a copy of
Rational Rose. Printing hard-copy documentation consisted of using the Rose capability to print narrative
documentation about the model. This works reasonably well except that each time documentation is generated it
starts the document from scratch. This means that any edits to the documentation must be done within Rational
Rose itself. Despite the ability to print the narrative, a large part of the model is the diagrams showing the
relationships of the various classes. Rose does not have a built in capability to create a document with all the
diagrams copied into it. As a result, creating documentation consisted of manually copying each diagram and
pasting each one into MS Word for printing. Knowledge of Visual Basic script would allow the creation of a
script that would automate this process.

A new enhancement to the latest version of Rational Rose will definitely improve coordination among team
developers. This enhancement enables the automatic creation of a web version of the model created in Rose.
This is a very sophisticated output that mimics the interface of Rational Rose itself, allowing the viewer to
explore the model in a tree view interface and being able to "drill down" to individual class and property
documentation. An excerpt of our model in web output format is at
http://www.vwi.com/public/Demo/it/v53aMPDMS/v53ahfpa.htm.

While Rational Rose is not the only modeler on the market, the addition of the Integration Kit on the Jasmine ii
Beta CD makes Rose the only choice for modeling Jasmine objects, in my opinion. The integration kit provides
the ability to generate ODQL directly from the Rose model, and also the ability to import a Jasmine model out of
the database into Rose. Using this kit required a slight modification to our existing model in terms of method of
documentation, however the entire model of over 195 classes was modified within a single man-day.

http://www.vwi.com/public/Demo/it/v53aMPDMS/v53ahfpa.htm

My First Jasmine Project 7

Schedule

The requested project deadline was about 199 days, however this was changed in the initial contract to be 261
calendar days. The original schedule was divided into four major phases:

1. Requirements development and analysis

2. Defining the Architecture and Object Design

3. Stages 1 through 3 of coding

• Database entry screens

• Output and Analysis

• Loading the data into the application

4. Product release.

This schedule was subsequently changed to reflect a series of iterations. This was primarily due to the object
design phase falling behind. Through the use of iterations, with each reflecting a complete but separate aspect of
the application, OOD could continue on one aspect while coding began on those areas where the OOD was felt
to be complete. The revised schedule reflected 349 calendar days with the following major phases:

1. Requirements Development

2. Iterations #1-#5 covering different subject areas (building, organizations, analysis and charting, etc.)

3. Loading the data and installation on the client machines.

The following shows the latest time estimates for the major tasks. The table shows how a substantial amount of
time was devoted to the modeling effort itself. It must be noted that the efficiency of object modeling allowed
for what I would consider a minimal amount of time devoted toward the actual coding of the solution. The
above 700 man-hours for ODQL (Object Data Query Language) equates to about 3.5 hours per class. This is
very effective considering the level of complication each of these classes represent. It must also be noted that
while our programmers were relatively new to ODQL, due to its similarity to C and its adherence to object
metaphor the programmers became proficient very quickly.

Task Latest
OOA/OOD 13 months

Screen Design 2 months

Screen Coding 520 hours

ODQL 700 hours

Data Entry – Deployment TBD

8 JG065SN

Determining the initial business requirements and relationships usually begins with a meeting or brainstorm
session with the client. As part of the initial analysis phase, I had scheduled two separate brainstorm sessions.
Each session was to last two days each. Attendees included 2 principal users, 3 developers, and 6 additional
Subject Matter Experts (SMEs) (4 of which were contractors involved in the master planning process). These
sessions were not nearly as productive as I had intended or scheduled. A main reason is that although it is
difficult to pull so many people out of their normal business schedules for too long, and it was an added expense
to the contract for the contractors in attendance, the sessions were too short. A week should be scheduled for
each session. We spent nearly the entire two days working through the normal "storming" phases of large
committees. I also had to provide an initial overview of the basic concepts of object modeling and its syntax.
By the time we had progressed to becoming productive in identifying the project needs and objects, the session
was over.

Estimate

The obvious lesson learned was that cost estimates should not be determined predominantly by senior leadership
without detailed review of the requirements. Software estimation tools should definitely be used to assist in
preparing estimates. Results from such tools may also help to reign in requirements that are beyond the client's
budget.

As a point of note, the Construx estimator (see

My First Jasmine Project 9

Tools section below) indicated a cost of nearly $2.5 million, we started with $125k. My first estimate was
$160K, with the final estimate being $350K. It must be noted that the Construx estimator is based upon a final
software product, while our requirement was for a prototype. Clearly, our initial estimate was too optimistic,
even for a prototype.

If software is to be developed on a fixed price type of contract, then requirements development should be
executed separately based upon a time plus cost method. This way both client and developer will have
reasonably agreeable perspectives on the end goal.

Test Data

As the project developed to the point where we had coded classes and screens capable of interfacing with the
Jasmine database, we needed data to adequately test the operations. Creating new data from within Jasmine
Studio can be very convoluted since a typical business object entails layers within layers of object relationships.
Working within Studio it can become difficult to figure out where to begin creating an object and rapidly
creating several objects requires a lot of manual effort. This is not a reflection upon Studio as a tool. It is very
effective for navigating through the numerous layers of object relationships and for creating an object. However
our model called for several objects to be in existence prior to other objects being able to be created. A typical
business model is very in depth with several layers of complexity. Supporting convenient and rapid data entry
into the business model is the reason for custom designing screens for the client. However, we also needed a
simple process for getting data into the system, and we did not yet have screens to do so. We wanted to load
several hundred objects from a legacy xBase file and did not want to resort to manually reentering all of this
information. To resolve this we turned to the use of load-unload files. Unload files allow for the rapid transfer
of data between two Jasmine databases. They are also used to transfer the class models from one site to another.
We hoped to use this method to quickly load the Jasmine model with sample test data. The Jasmine
documentation is complete enough to understand how to make the call to the two programs to perform these
functions. However, learning the specifics for modifying the unload files to "paste" in new data did require some
trial and error.

10 JG065SN

The process we used to quickly get data into Jasmine is as follows:

For each class that you want to upload object data, create one or two complete objects, from within Jasmine
Studio. This is so that when you create the initial unload file you can determine the correct order of the
attributes, and also have a starting point to begin loading data. The quality of these initial entries is not
important since we erased it all later in the process. A sample of a typical layout is shown in Figure 2. If the flag
to include class structure is included in the call to unload, this will be displayed in the unload file sandwiched
between the class name and the start of the data columns.

Unload the classes to which you want to upload data. If the objects include references to other objects, then
those objects’ classes must also be unloaded. If this step is not taken, then you will have to ensure you are using
the correct OIDs for each of those references when you create your own objects in the new load file. It is easier
to manage the relationships if you are creating the OIDs for all of the effected objects at the same time.

Reviewing the ASCII unload file we determined that for each set of objects listed under each class the OIDs are
bracketed with less-than signs on the left and greater than signs on the right, for example: <1025>. These OIDs
are not enclosed within quotation marks. The other important note is that exported OIDs always begin with
<1025>. This means that new objects being added through this unload process should always start with <1025>
and increment upwards from there.

After quick review of the unload file, the location and layout for the class can be determined. We then used MS
Excel to create a spreadsheet to duplicate the columnar layout of the class. Excerpts from our spreadsheets are
shown in Table 1 and Table 2. The first column is the OID of each object. Column three shows how a
reference to another object is displayed. A complete reference consists of the <Class Family::Class
Name::OID>. The last two columns shown in the spreadsheet are not transferred out to the unload file, but are
used to easily create our object reference strings (refer to Table 2 to see how the formula’s utilized these
columns). Unload formats for types of attributes are: OIDs must be bracketed in < and > without quotation
marks; numeric attributes must not have quotation marks; character strings must be within quotation marks; date
types must indicate the attribute type by specifying the word ‘date’, but without the quotes, followed by the
complete date in quotation marks as follows: date”YEAR-MONTH-DAY-AD” to include the hyphens as shown.
Year, month and day are in numeric format. Specify “AD”. We are uncertain if “BC” would be an acceptable
date type.

Once the spreadsheet has been created so as to mimic the correct columnar layout of the unload file, we exported
the columns to a comma delimited file (CSV) format. We then opened the CSV file and pasted the results into
the previously generated Jasmine unload file. Shown in Figure 2 is a sample of the output contained in a typical
unload file. The first line identifies the format of the ULD file. The second line identifies the class family
(“VWIrose”) and the class name that is to follow with its data. The critical item to pay attention to for the
purpose of pasting in your new data is the last number on this line: 120, shown boxed and highlighted. This
number indicates the number of data objects that will follow in the ULD file for this particular class. Thus in
this case the 120 indicates that 120 data objects are being added to the Jasmine database.

After the above step we then deleted the classes from the Jasmine database. This accomplishes two important
items: it removes any objects from the database precluding duplicate objects from being created, and two it
ensures that our OID number sequence starting with 1025 does not cause problems. If a load is attempted
without removing any previous objects, the references you created by referring to a particular OID number may
not be correct, since Jasmine will dynamically assign new OIDs if the requested OID already exists. A Jasmine
command to “ZAP” the database would be appreciated in support of this process. Anyone familiar with dBase
or its xBase relatives knows that the ZAP command deletes all data from a database while retaining the structure
(in this case the class) intact.

My First Jasmine Project 11

After the applicable classes have been deleted, a Load command is performed including the -s flag to pull in the
class structure. This results in the class automatically being defined and built prior to importing the new data.

Table 1: Excel spreadsheet showing creation of data for pasting into unload file

oid KeyID MEPRSRefCode DMISID RefOID DMIS OID

<1025> 1 <VWIrose::meprsRefCode::1025> <VWIrose::dmisid::1733> 1025 1733

<1026> 2 <VWIrose::meprsRefCode::1028> <VWIrose::dmisid::1733> 1028 1733

Table 2: Same excel file as above but showing the formulas for building the data

oid KeyID MEPRSRefCode DMISID RefOID DMIS OID

"<"&TEXT(B101+
1024,0)&">"

1 "<VWIrose::meprsRefCode::"
&G101&">"

"<VWIrose::dmisid::"
&H101&">"

1025 1733

"<"&TEXT(B102+
1024,0)&">"

2 "<VWIrose::meprsRefCode::"
&G102&">"

"<VWIrose::dmisid::"
&H102&">"

1028 1733

Jasmine/unload_format_1.0.0

"VWIrose","startFYTimePoint",4,1,0,0,0,0,120,"====== CLASS startFYTimePoint ==== from TimeReference
Package ====="

"VWIrose","timerClass"

"oid","DateTP","TimeTP"

<1025>,date"1900-10-1-AD","00:00:00"

<1026>,date"1901-10-1-AD","00:00:00"

Figure 2: Sample of unload output for textual data

12 JG065SN

Tools

Over the course of the project several software tools were used or desperately wished for. In some cases we
created our own tools to meet the needs. Such needs included: cost estimating, ODQL generation from our data
models, incorporating the programmers’ ODQL back into the data model (a comparison tool), and replication of
ODQL source (never did find a solution for that one). Some of the tools we used are described below:

Jasmine Workbench, www.InfoPike.com. This tool provided a GUI utility to perform basic but essential tasks in
Jasmine, such as: creating new or deleting class families, creating and extending stores, CODQLIE the ODQL
editor in a GUI window, plus others. This tool greatly sped the completion of many necessary tasks. InfoPike
is working on a new Jasmine ii version of this tool.

ODQL generation. Generating ODQL directly from the data model diagram avoids an opportunity to make
mistakes. Our development partner Archaeotech had developed a script to accomplish this one way action. This
Rational Rose script would read a UML model and generate correct ODQL code for compiling into Jasmine.
The latest Jasmine ii Beta CD contains the Integration Kit for Rational Rose which allows generating ODQL
from a Rose model. The ODQL generated will run in v1.2 Jasmine with a specific exception. The kit does not
truncate long descriptions stored within a Rational Rose model, (CA is aware of this and has initiated a
resolution). As a result, the code will crash whenever a description line longer than approximately 200
characters is encountered. I developed a small utility in CA-Visual Objects, available at www.Hungry-
Hippo.com (free), that will correct this problem by creating a copy of the ODQL script but with truncated
descriptions.

Jasmine Model comparison. Although we could generate ODQL code successfully from our UML model, we
needed a way to check it against the ODQL code that was actually being written by the coders. Again I
developed a utility in CA-Visual Objects (free at www.Hungry-Hippo.com) that we used to compare two
Jasmine class families. To support this comparison we created two class families: one from the Rose model and
the one being coded. This utility can then print two exception reports, one showing missing classes, and the
other showing differences in properties. This allowed us to update the Rose model to reflect new methods and
attributes being added by the programmers as part of the implementation process.

Cost Estimating: Construx™ Estimation Software (free) www.Construx.com. This tool enables quickly
estimating the cost of a software project based upon a database of other projects of similar size, complexity and
demands for timeliness. You begin by entering estimates for the size and complexity of your project based upon
lines of code expected, or number of classes, plus a timeframe for project completion. The software then shows
similar projects displayed on a curve of time versus cost (see Figure 3), with your own project’s estimate
indicated on the graph. While we did not actually use this software for preparing our contract bid, it did help to
assuage our egos that we were working under limitations. Note our original scope was $125,000 compared to
the Construx estimate of over $2.5M.

http://www.infopike.com/
http://www.hungry-hippo.com/
http://www.hungry-hippo.com/
http://www.hungry-hippo.com/
http://www.construx.com/

My First Jasmine Project 13

Figure 3: Construx estimate for project.

14 JG065SN

Summary

This paper provided a broad review of my experience with my first Jasmine project. Specific lessons learned
from this experience were highlighted as points of interest. Specific tools used in the project were identified as
well as an extensive reading list for new object database project managers. During this project we found that
Jasmine provided us a fully capable tool for creating a modern application that would meet the client's demands.
Due to its full support for multimedia of all types, and its fully computational language support we did not have
to spend time trying to solve basic storage problems. Our full effort was focused upon the solution of the
business problem and modeling the business relationships, and not on working around the technical
shortcomings of a particular storage platform. Providing the capability to store and manipulate photographs,
drawings, CAD documents and full numeric and text data was as simple as embedding preexisting Jasmine
classes within our new custom business classes. For future complex solutions incorporating the modern
requirements of storing video, photos, and other graphics while permitting the modeling of flexible and adaptive
business operations, I would readily recommend Jasmine as the base platform for development.

Biography
Bill Cross is a Senior Functional Analyst and Health Facility Planner for VW International, Inc., an engineering
and management firm. As part of a 17 year career in medical facility planning and construction he acquired
skills in dBase, Clipper (8 years), dbFast and Visual Objects (5 years). He has been following Jasmine since its
prerelease stages. At the time of this writing, he is currently working on adapting a legacy Clipper application
to new functional requirements for a Texas utility company.

My First Jasmine Project 15

Reading List

Blaha, Michael. Object-Oriented Modeling and Design for Database Applications. Upper Saddle River, NJ.:
Prentice Hall, 1998. ISBN 0-13-123829-9

Coad, Peter. Java Modeling in Color with UML. Upper Saddle River, NJ.: Prentice Hall PTR, 1999. ISBN 0-13-
011510-X

Coad, Peter. Object Models Strategies, Patterns, & Applications. Upper Saddle River, NJ.: Yourdon Press, 1997.
ISBN 0-13-840117-9

Fowler, Martin. Analysis Patterns Reusable Object Models. New York: Wiley, 1997. ISBN 0-201-89542-0

Fowler, Martin. UML Distilled. New York: Addison Wiley, 1997. ISBN 0-201-32563-2

Khoshafian, Setrag. The Jasmine Object Database. San Francisco, CA.: Morgan Kaufmann Publishers, Inc.,
1999. ISBN 1-55860-494-4

Kruchten, Philippe. The Rational Unified Process, An Introduction. New York: Addison-Wiley, 1999. ISBN 0-
201-60459-0

McCarthy, Jim. Dynamics of Software Development. Redmond, WA.: Microsoft Press, 1995. ISBN 1-55615-
823-8

McConnell, Steve. Software Project Survival Guide. Redmond, WA.: Microsoft Press, 1998. ISBN 1-57231-
621-7

Quatrani, Terry. Visual Modeling with Rational Rose and UML. New York: Addison Wiley, 1998. ISBN 0-201-
31016-3

Reingruber, Michael. The Data Modeling Handbook. New York: Wiley, 1994. ISBN 0-471-05290-6

Silverston, Len. The Data Model Resource Book. New York: Wiley, 1997. ISBN 0-471-15364-8

Straley, Stephen. The Encyclopedia for Jasmine vol. 1. San Francisco, CA.: Sirius Press, 1998. ISBN1-890726-
09-5

Taylor, David. Business Engineering with Object Technology. New York: Wiley, 1995. ISBN 0-471-04521-7

Taylor, David. Object Technology, A Manager’s Guide. New York: Wiley, 1998. ISBN 0-201-30994-7

